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Abstract The possibility of using solid supports and
intermittent substrate feeding to manipulate biotrans-
formation by fungi was examined, with amoxapine as a
model compound. Cunninghamella elegans ATCC 8688a
grown as free cells in six-well plates showed 7-hydrox-
yamoxapine as the major metabolite of amoxapine
biotransformation. However, when cells were grown in
the presence of activated carbon, N-formyl-7-hydrox-
yamoxapine was formed as the major metabolite.
Intermittent feeding of amoxapine also favored the
formation of N-formyl-7-hydroxyamoxapine.

Keywords Amoxapine - Biotransformation -
Cunninghamella - Solid support - Substrate feeding

Introduction

Biotransformation is an attractive approach to generate
structural diversity in a chemical library [1, 6, 8]. Fungi
are often used as whole cell biocatalysts because of
their ability to mediate many different reactions,
including oxidative, reductive, and hydrolytic trans-
formations of a wide range of substrates [2]. Recently,
microtiter plates have been introduced to aid rapid
screening of microbial cultures for biotransformation
activities [4, 12]. However, these studies have been
confined to screening eubacteria and have not been
evaluated for fungi. Fungi in liquid media can grow
either as free mycelia in a filamentous form or remain
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aggregated in a pellet/floc form. These morphological
patterns strongly regulate metabolite production and
have been exploited extensively for the production of
secondary metabolites [5]. Filamentous fungal growth
is likely to be challenged in microwell plates because of
limited surface area, mixing, and aeration, thereby
affecting oxygen availability, which is imperative for
growth and biotransformation activities. The effects of
these fungal morphological variations on biotransfor-
mation remain obscure.

This study was initiated to evaluate fungal bio-
transformation in a six-well plate. Different types of
solid supports were introduced with the view that these
solid matrices would provide the fungus with addi-
tional surface area for growth. We chose amoxapine, a
tricyclic antidepressant developed by Wyeth as Asen-
din, as a model compound for biotransformation by
Cunninghamella elegans. Moody et al. [9] had previ-
ously reported that 7-hydroxyamoxapine was the
major metabolite of amoxapine biotransformation by
C. elegans. In this work, the influence of growing fungi
in the presence of solid supports to enhance biotrans-
formation efficiency and create new metabolites was
investigated. In addition, the effects of intermittent
feeding of substrate on biotransformation were also
studied.

Materials and methods

Fungal culture, media and chemicals

C. elegans strain ATCC 8688a was obtained from the American
Type Culture Collection (Manassas, Va.) and maintained on
Sabouraud agar (Becton and Dickinson, Sparks, Md.). Sabouraud-
dextrose broth (Becton and Dickinson) was used for biotransfor-
mation studies.

Amoxapine (Asendin) [2-chloro-11-(1-piperazinyl)dibenz-(b,f)
oxazepine] was purchased from Sigma-Aldrich (St. Louis, Mo.)
The following solid supports were used in biotransformation
studies: glass bead (3-mm diameter), cellulose pulp (ash-free;
Schleicher and Schuell, Keene, N.H.), acid-washed activated car-
bon (Baker, Phillipsburg, N.J.), florisil (100-200 mesh) (Baker) and
celite 545 (Baker).



Inoculum preparation

Frozen fungal stocks were plated on Sabouraud dextrose agar and
incubated for 4-7 days at room temperature. Three 8-mm diameter
agar plugs bearing surface growth were extricated from the plates
and inoculated into 50 ml Sabouraud dextrose broth in 250-ml
Erlenmeyer flasks, which were then incubated at 25°C at 200 rpm
with a 5-cm throw. After 7 days of incubation, the mycelium was
harvested by filtration through several layers of sterile cheesecloth.
The mycelial mass was washed three times with sterile distilled water
(100 ml per wash) and the mycelia resuspended in 50 ml sterile
distilled water and blended for 5 min on ice using a homogenizer
(Omni International, Warrenton, Va.) under aseptic conditions.
The blended mycelium was used as inoculum at 10% (v/v).

Biotransformation conditions

Biotransformation experiments were conducted either in a six-well
plate (Becton Dickinson, Franklin Lakes, N.J.) containing 5-ml
Sabouraud dextrose broth or in 10 ml in a 25 ml Erlenmeyer flask.
Where indicated, pre-weighed and autoclaved activated carbon,
celite, cellulose pulp, florisil or glass beads at 1% (w/v) were added
and subsequently inoculated with the fungus. Wells with medium
alone, medium + cells, medium + autoclaved cells, medium + sub-
strate, medium +solid supports, and medium + substrate + solid
supports served as controls. The six-well plates were sealed with
Parafilm and incubated at 25°C at 150 rpm. After 48 h of incu-
bation, filter-sterilized substrate was added to the pre-determined
wells to give a final concentration of 0.5 mg/ml. Aliquots were
aseptically removed at various times during incubation and the
samples were extracted with equal volumes of ethyl acetate, con-
centrated, resuspended in methanol and analyzed by LCMS.

LCMS analysis

LCMS analysis was performed on the extracts of the culture broth
of amoxapine-biotransformed cultures using a model 1100 HPLC
system (Agilent, Wilmington, Del.) consisting of a G1322A deg-
asser, G1313A autosampler, GI1311A quaternary pump and a
G1315A photodiode array UV detector. The HPLC system was
coupled to an LCQ ion trap mass spectrometer (ThermoFinnigan,
West Palm Beach, Fla.) equipped with an electrospray (ESI) probe.
The compounds were eluted using a linear gradient from 5% to
95% acetonitrile in water with 0.025% formic acid over 25 min at a
flow rate of 1 ml/min. A 3.5-um Zorbax Eclipse XDB-C18 column

Fig. 1A-F Growth of Cunninghamella elegans on different solid
supports in a six-well plate after 7 days of incubation. A Free-
growing cells. B Cellulose pulp. C Activated carbon. D Glass beads.
E Florisil. F Celite. The plates were incubated at 25°C and 150 rpm
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(4.6x50mm; Agilent) was used. The metabolites observed were
confirmed as related to amoxapine by UV data from the PDA
chromatograms and identified using mass spectral data from
positive mode ESI base peak chromatograms.

Intermittent feeding of substrate

For substrate feeding studies, the experimental design described
above was followed except that the substrate amoxapine was added
intermittently to the growing culture at different incubation times.
Amoxapine was added in increasing increments to the growing
culture at each 24 h time point to give a total of 10% at 24 h after
inoculation, 30% at 48 h incubation, 60% after 72 h, and 100% at
96 h.

Results and discussion

Fungal morphological variations when grown
in the presence of solid supports

Growth of C. elegans in the presence and absence of
solid supports is presented in Fig. 1. In general, the
fungal mycelium tended to aggregate as one big pellet.
This morphological form appeared to be common when
grown without any solid support or in the presence of
glass beads and celite (Fig. 1A, D, F). However, in the
presence of florisil, the fungus grew as a mat (Fig. 1E).
Interestingly, with activated carbon, the mycelium
sequestered the resin, and fungal growth encompassed
the particulate matter (Fig. 1C). In contrast to the
morphological forms observed with other solid sup-
ports, C. elegans formed pellets of various sizes when
grown in the presence of cellulose pulp (Fig. 1B). Fungi
have been grown in microtiter plates for other applica-
tions [7, 10] but there is no mention of the morphology
of the cells or variations thereof. Penicillium brevicom-
pactum grown in the presence of celite 535 and 545 in a
shake-flask culture was reported to form smaller pellets
than when grown as free cells and showed enhanced
production of mycophenolic acid [11].

Biotransformation of Amoxapine

Amoxapine (Fig. 2), a tricyclic antidepressant drug that
belongs to the dibenzoxazepine class, is the N-deme-

4 3

Cl

Fig. 2 Structure of amoxapine
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Fig. 4A-C LCMS profile of the
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thylated derivative of the neuroleptic compound loxa-
pine, developed by Wyeth as Asendin. This compound
was chosen as a model to investigate the effects on

<

Fig. 3 LCMS analysis of amoxapine biotransformation by C.
elegans. Cells were grown in six-well plates at 25°C, 150 rpm, as
free-growing mycelia without any solid supports (A), or in the
presence of cellulose pulp (B), activated carbon (C), or celite (D).
The top panel in A-D is the base peak chromatogram and the
bottom panel represents peaks seen on subtraction of amoxapine
(molecular mass 314) from the top panel

Tima imin)

biotransformation of growing C. elegans with and
without solid supports in a six-well plate and intermit-
tent feeding of substrate.

Moody et al. [9] previously reported that 7-hydrox-
yamoxapine was the major metabolite of amoxapine
biotransformation by C. elegans. N-Formylamoxapine
and N-formyl-7-hydroxyamoxapine were the other
metabolites of biotransformation. In accordance with
their finding, we also observed 7-hydroxyamoxapine
(molecular mass of 330) as the major metabolite in cells
grown without any solid supports (Fig. 3A) on day 7 of
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incubation. Cells grown in the presence of cellulose pulp
and celite also showed 7-hydroxyamoxapine as the ma-
jor metabolite (Fig. 3B, D) and also showed N-formy-
lamoxapine. N-Formyl-7-hydroxyamoxapine was not
detected in these cultures. In contrast to these observa-
tions, cells grown in the presence of activated carbon
(Fig. 3C) produced N-formyl-7-hydroxy-amoxapine as
the major metabolite and showed no formation of 7-
hydroxyamoxapine. Fungal morphology when grown in

activated carbon may possibly be a factor that regulates
the production and/or activity of these enzymes. Alter-
natively, this adsorbent may have selectively immobi-
lized the enzyme and/or substrate, favoring formation of
certain metabolites. Temporal biotransformation studies
with cells grown in the presence of florisil initially
showed low levels of N-formyl-7-hydroxyamoxapine
(Fig. 4A) and N-formylamoxapine, but in subsequent
days only 7-hydroxyamoxapine was observed to accu-
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mulate (Fig. 4B, C). It is possible that more than one
hydroxylase enzyme is involved — one presumably acting
on N-formylamoxapine to form N-formyl-7-hydrox-
yamoxapine and another that hydroxylates amoxapine to
7-hydroxyamoxapine. There is also the possibility that a
deformylase is being induced later in the growth cycle that
may explain the accumulation of 7-hydroxyamoxapine.

Intermittent feeding of substrates is commonly used
in microbial fermentation to help regulate nutrient level
in the medium and is an effective strategy to maximize
production of microbial metabolites [3]. In addition,
intermittent feeding can be an attractive approach in the
following scenarios: (1) the substrate is toxic or inhibi-
tory to growth of the cells at the desired final concen-
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tration, (2) the solvent used to dissolve the substrate is
likely to affect cell growth, (3) a desired concentration of
substrate induces the enzyme(s) associated with bio-
transformation, or (4) there is a significant amount of
substrate that is not used, resulting in low biotransfor-
mation efficiency.

Feeding amoxapine intermittently to C. elegans cells
grown without any solid supports or in the presence of
florisil showed the formation of N-formyl-7-hydrox-
yamoxapine as the major metabolite (Fig. 5B, C). This is
in contrast to the observation of 7-hydroxyamoxapine as
the major metabolite when amoxapine was provided in a
single addition (Figs. 3A, B, D; 4). Conversion of
amoxapine to N-formyl-7-hydroxyamoxapine on day 14
seemed to be favored by the presence of florisil as evi-
denced by amoxapine peak heights (Fig. 5B, C). Fur-
thermore, a progressive decrease in amoxapine with a
concomitant increase in the formation of N-formyl-7-
hydroxyamoxapine was observed in cultures grown in
the presence of florisil that were fed intermittently with
amoxapine (Fig. 6). Although several plausible expla-
nations can be proposed for the observed results, one
possibility could be that substrate concentration medi-
ates regulation of the enzyme(s) associated with bio-
transformation. The lower concentrations of amoxapine
may favor induction of formylase while repressing it at
higher concentrations. On the contrary, since 7-hy-
droxyamoxapine was not observed in intermittent feed-
ing studies, it is possible that the concentration of
amoxapine was inadequate to induce the hydroxylase(s).
Unfortunately, there is limited information on the reg-
ulation of enzymes associated with biotransformation in
filamentous fungi. Use of solid supports such as acti-
vated carbon and florisil seems to not only enhance
biotransformation efficiency, as observed with amoxa-
pine, but also promote formation of a greater diversity
of metabolites, as was observed with other compounds
(data not shown). Feeding substrates intermittently also
seems to favor fungal biotransformation. In conclusion,
the two approaches investigated in this study have
proven to be useful tools in manipulating fungi for their

successful application in biotransformation of interest-
ing compounds.
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